

Center for Satellite and Hybrid Communication Networks

High Data Rate Satellite Networks and Communication Support for NASA Missions

Faculty & Research Staff: J.S. Baras, E. Geraniotis, M. Hadjitheodosiou

Graduate Research Assistants: B. Barrett, C.H. Chou, C. Colomb, M. Karir,

S. Narayanaswamy, P. Ramakrishnan,

S. Ramaswamy, W.Tjocroaminata, S. Tatake,

W. Zhang

Industry Interest: TRW, Space Systems Loral, Hughes Space &

Comms, Loral Skynet, Boeing, Teledesic,

Orbital Sciences, COMSAT Labs.

Sponsors: NASA, ARL ATIRP, Bellcore, AT&T, HNS,

Boeing, Lockheed Martin, Space Systems

Loral, TRW

Industry Advisory Board Meeting February 17, 1999

Research on Broadband Satellite Networks: Objectives and Significance for Industry

Objectives:

- Assist in system design optimization of broadband satellite networks.
- Investigate/Facilitate interoperability with terrestrial networks.
- Conduct performance comparisons of candidate technologies for waveform selection, signaling techniques, on-board processing, dynamic bandwidth allocation, routing and hand-off, network management.
- Develop and apply tools for fast performance evaluation to specific broadband satellite systems.
- Investigate QoS provision for Internet access, multimedia services and specialized applications (e.g. Telemedicine) via satellite.

• Significance:

- Satellite resources are very expensive; Detailed and dynamic system optimization is therefore necessary to enable commercial satellite systems to offer competitive prices with other competing technologies.
- Broadband satellite networks will play a major role in the provision of GII/NII, however there is a need to overcome some of the shortcomings inherent in satellite-based systems to ensure QoS provision and transparent interoperability with terrestrial networks.

Support for NASA Missions: Objectives and Significance for NASA

• Objectives:

- Provide high quality broadband communications connectivity to the ISS from commercial satellite networks
- Facilitate broadband Internet services throughout NASA missions
- Provide performance evaluation of space communication systems

• Significance:

- International Space Station (ISS) is the NASA Mission with the highest priority
- National Space Policy mandate for NASA to commercialize its space communications operations
- Reduction in cost for NASA broadband communication needs
- Better and easier dissemination of NASA mission and experiments data

Support for NASA Missions: Objectives and Significance for Industry

• Objectives:

- Efficient and cost effective communications from spacecraft to commercial satellite constellations
- Every spacecraft and instrument as an IP address
- Bring commercial communication services to commercial space

Significance:

- Commercial Space needs high data rate and high quality communications
 - > Experiments with ISS
 - > Spacecraft linkage
 - > Future space habitats and planetary missions
- NASA and commercial space are large customers (markets) for commercial communication companies

Background

- CSHCN can play a unique role in research studies into issues related with:
 - (a) performance optimization of commercial broadband satellite networks
 - (b) supporting communications from the ISS (and other NASA missions) using commercial satellite constellations
 - Significant research accomplishments in recent years (basic research & industry collaboration) in design & optimization of broadband satellite networks
 - Development of:
 - Analytical Tools
 - Simulation Testbed
 - Hybrid Networks Laboratory/Hardware Testbed used in studies of satellite systems which can be easily adapted to fit various studies in this area.

Recent CSHCN Accomplishments

- Development of optimal and near-optimal policies for dynamic bandwidth allocation for multimedia traffic in TDMA and CDMA broadband satellite systems
- Design & trade-off analysis for an on-board switch for a HDR Satellite System
- Investigation into use of Global Processor Sharing / Fair queueing techniques to ensure Bandwidth Control & QoS Guarantees to multimedia service transmission via satellite
- Performance evaluation of hand-off algorithms for a MEO satellite system with diversity

Recent CSHCN Accomplishments

- Research work in: waveform selection;
 signaling techniques;
 coding & link enhancement
- Development of integrated network management systems for broadband satellite networks
- Development of intelligent monitoring and fault management systems for large satellite networks
- Development of tools for fast performance evaluation of large HDR satellite systems and networks.

Development of Analytical Tools

- Traffic source models (VBR, Internet), specifically adapted for fast end-to-end performance evaluation in satellite & hybrid networks
- Analytical tool for fast evaluation of On-Board Switching Schemes
- Analytical tool for fast evaluation of end-to-end performance measures (delay, blocking) for multihop networks
- Planning tool for satellite/terrestrial networks
 - Inputs: Demographics, demand, geography, network elements, network models
 - Outputs: Trade-off between heterogeneous network mixed architectures,
 selection of best trade-off

Development of Simulation Testbed

• Modular simulation testbed under development includes:

- Realistic traffic source models for broadband services
- Protocol enhancements for Internet (TCP/IP) and ATM service provision via satellite
- Orbital/coverage models of candidate satellite constellations
- Satellite Gateway Model (Link Enhancements (Coding), Framing)

• Further enhancements will include:

- Network topology architectures (including Inter Satellite Links)
- Antenna & channel RF (Ka and V Band cases) characteristics
- On-board switching models
- Phase arrays and tracking

High Data Rate Communications for the ISS and NASA missions

• **OBJECTIVE:** Investigate the use of commercial GEO and LEO/MEO satellite constellations for the communication needs of various NASA missions and in par Station (ISS).

² CommNet stdesign on the Space Station.

Special Session at Conference on International Space Station Utilization

 On February 2, 1999 CSHCN organized Special Session at Conference on International Space Station Utilization

Commercial Communication System for the ISS

Papers:

- Dr. Thomas Brackey et al. (Hughes Space and Communications)
 Title: Commercial Communications for the ISS: System Considerations
- Dr. Joseph Bravman et al. (Orbital Sciences)
 Title: The Application of a Commercial Wideband Constellation for ISS Communications
- Dr. Carl Mitchell et al. (Space Systems Loral)
 Title: Adjunct Payload for ISS High-Data-Rate Communications
- Mr. Marty Skudlarek et al. (Lockheed Martin)
 Title: ISS Migration to Commercial Standards Wideband Data Link

Communication Support for the ISS - Project Plan

• Phase I:

- 1. Determine, in cooperation with NASA LeRC particular traffic scenarios, QoS service requirements for initial analysis scenario
- 2. Identify potential commercial systems as candidate for investigation, starting from simple GEO (existing) Ku/Ka-band systems and moving to Ka/V band MEO / LEO systems

Phase II:

- 1. Where necessary apply analytical tools for traffic modeling, handoff analysis, fast end-to-end performance evaluation
- 2. Develop simulation model that includes network architecture & topology of Hybrid Network, including:
 - > ISS (treated as an extremely LEO satellite) & NASA ground network.
 - > Candidate Commercial Systems (constellation orbit model, ground network topology, information on routing options through constellation, ISLs if any)

• Phase III:

 Using analysis & simulation perform detailed studies to quantify the performance of candidate satellite systems for specific services, protocols & traffic scenarios and recommend potential design modifications to ensure NASA's QoS requirements are met

Performance Parameters for NASA Missions

• Performance parameters that need to be addressed include:

- COVERAGE: Percent of time that data could be transmitted to the ISS via the commercial satellite system (this includes Static & Dynamic coverage and the effect of Inter Satellite Links)
- THROUGHPUT: Maximum amount of information that can be exchanged between constellation & ISS, based on service availability and the per channel data rate
- QUALITY-OF-SERVICE: Level of confidence for the reliable delivery of information to NASA users: Link quality (BER), Link Availability, Connectivity
- ANTENNAS & TERMINALS: Antenna & earth terminal characteristics wrt required link quality. It would be necessary to have an antenna design well suited for covering both LEO vehicles and terrestrial traffic

Accomplishments - Broadband Support for NASA Missions

Completed generic simulation model consisting of the ISS with a network of three ground stations and three GEO satellites, representing a network architecture similar to NASA's TDRSS-DSN.

Accomplishments - Broadband Support for NASA Missions

Developed second model that consists of a commercial network of 7 satellites in MEO orbit (9000 km), and commercial ground stations. Each station is connected to three other commercial network gateways. Satellite network performs basic shortest-path hop-by-hop routing based on destination ID using established inter-satellite links.

Continuing Work

- It will be *critical* at an early stage to understand the operations requirements for telescience that will need to be supported. This will enable us to
 - model traffic loads and QoS requirements,
 - evaluate candidate constellations on their ability to support these services
 - optimize the system's performance.
 - Plan bandwidth requirements with future use in mind.

Work is under way to determine these / provide reasonable assumptions.

- Modeling & investigation work continues in three directions:
 - Development of flexible generic model that can be used with suitable adjustments to simulate various traffic and constellation scenarios.
 - Investigation into protocol support required under this scenario (including TCP/IP, NASA's SCPS, SAFE)
 - Extension of this work to other NASA missions, constellation of scientific satellites, issues related with treating spacecraft or instruments on-board as nodes of a network (Interest from NASA Goddard, Lewis RC)